Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. arch. biol. technol ; 63: e20190046, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132244

ABSTRACT

Abstract This research aims to determine the efficiency of chitosan and xanthan gum films in conservation of croaker fillets kept in refrigeration for 9 days. Proximal composition, loss of mass, color, pH, TVB-N (Total Volatile Bases) and microbiological profile were assessed. The films were prepared with chitosan and xanthan gum in varying mass proportions 100:0, m:m (C100XG0); 60:40, m:m (C60XG40); 50:50, m:m (C50XG50). They presented the respective values for moisture content, water solubility, thickness and water vapor permeability: 24.59%, 19.50%, 0.086 mm and 11.45gm-1.s-1.Pa-1for C100XG0; 24.58%; 20.27%, 0.091 mm and 10.41 gm-1.s-1.Pa-1for C60XG40; 22.11%, 22.06%, 0.089 mm and 10.68 gm-1.s-1.Pa-1 forC50XG50.The films were made in small bags format capable to hold about 20 g of fish fillets. A control sample was prepared in parallel, using polyethylene bags under the same storage conditions. The results showed that the chitosan films combined with xanthan gum had excellent antimicrobial properties, capable of preserving the quality of chilled fish fillets during the studied period, since it inhibited the growth of Staphylococcus coagulase-positive, Salmonella spp and coliforms at 45 ° C. Mass loss of the croaker fillets was not significantly affected by xanthan gum addition to the films. On the other hand, xanthan gum addition affected pH and color parameters of the corvina fillets. It was also verified that the combination of these two polymers promoted the reduction of N-BVT, being the C50XG50 film that presented the best response.


Subject(s)
Animals , Xanthomonas/chemistry , Food Packaging/methods , Chitosan/chemistry , Fishes/microbiology , Food Preservation/methods , Polysaccharides, Bacterial/chemistry , Anti-Infective Agents
2.
Braz. arch. biol. technol ; 57(1): 96-102, Jan.-Feb. 2014. graf, tab
Article in English | LILACS | ID: lil-702575

ABSTRACT

A significant amount of insoluble fibrous protein, in the form of feather, hair, scales, skin and others are available as co-products of agro industrial processing. These wastes are rich in keratin and collagen. This study evaluated different fungi for the hydrolysis of insoluble fish protein residues. Proteins resulting from Micropogonias furnieri wastes through pH-shifting process were dried and milled for fermentation for 96 h. This resulted the production of keratinolytic enzymes in the medium. Trichoderma sp. on alkaline substrate (28.99 U mL-1) and Penicillium sp. on acidic substrate (31.20 U mL-1) showed the highest proteolytic activities. Penicillium sp. showed the largest free amino acid solubilization (0.146 mg mL-1) and Fusarium sp. the highest protein solubilization (6.17 mg mL-1).

SELECTION OF CITATIONS
SEARCH DETAIL